skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Jianhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Morse potential is an important problem to examine due to its applications in describing vibrations and bond breaking in molecules. It also shares some properties with the simpler harmonic oscillator, at the same time displaying differences, allowing for an interesting contrast to its well-studied counterpart. The solution of the Morse potential is not usually taught in a quantum mechanics class, since using differential equations makes it very tedious. Here, we illustrate how to solve the Morse potential using the Schrödinger factorization method. This operator method is a powerful tool to find the energy eigenvalues, eigenstates, and wavefunctions without using differential equations in position space, allowing us to solve more problems without requiring a discussion of hypergeometric or confluent hypergeometric functions. 
    more » « less
    Free, publicly-accessible full text available August 6, 2026